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Fluorescent gold nanoclusters (AuNCs) have emerged as ideal sensor probes in different research  elds
such as environmental, biological and clinical applications. AUNCs have acquired a paramount impor-
tance in sensing applications owing to their unique physicochemical and luminescence characteristics
including excellent photostability and biocompatibility, high surface to volume ratio, besides size-
dependent luminescence, large stokes shift, and high emission rates. In this review, we will pay spe-
cial attention on the recent advances in the different synthetic strategies of AuNCs. Different parameters
affecting photoluminescence properties of AUNCs and their quantum yield including AuNCs size, core
composition, valence state of Au atoms, and ligand effect will be discussed in detail. This review will also

provide a comprehensive and recent look on the various AuNCs-based sensing systems developed for the
detection of heavy metal ions, inorganic anions, small biomolecules, protein tumor markers, enzymes,
and nucleic acids. This review demonstrates the high sensitivity, selectivity, simplicity, and low cost of
AuNCs as sensing probes for the various targeted analytes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, gold nanoparticles (AuNPs) have wit-
nessed a paramount importance in various research areas,
including chemical sensing, catalysis, biology, medicine, and envi-
ronmental sciences [1e4]. AuNPs with size larger than 3 nm exhibit
unique optical properties and have distinct feature of surface
plasmon resonance (SPR), which results from the resonant collec-
tive oscillation of electrons in the conduction band with the inci-
dent light. While ultrasmall AuNPs ( <3 nm), de ned as gold
nanoclusters (AuNCs), have molecular-like properties owing to the
strong quantum con nement effect that causes the continuous
energy bands break up into discrete energy levels [5,6]. Therefore,
AuNCs possess common features, such as HOMO-LUMO transition,
photoluminescence (PL), electrochemiluminescence, lacking SPR
peak, electromagnetism, redox behavior, and molecular chirality
[7e9].
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For AuNPs, several recent studies have extensively discussed
their controlled synthesis with different sizes (5 €50 nm), shapes
(rods, nanocubes, nanoplates, nano owers, etc), and compositions
(alloys such as Au/AgNPs, Au/Cu, Au/Pd,etc). These varied structural
features can effectively affect the physical properties of AUNPs by
exposing different facets ({110}, {210}, {111}, etc) and different
active sites (corners and edges) [6]. Thereby, AuNPs have large
surface to volume ratio and excellent catalytic activities toward
many reactions, such as oxidation, hydrogenation, and coupling
reactions, resulting in its implication in various applications, such
as electrocatalysis, solar cells, and biofuel cells. Further, AuUNPs have
been widely employed in colorimetry, surface-enhanced infrared
absorption spectroscopy, and surface-enhanced Raman scattering
owing to the unique SPR feature of AUNPs. Unlike AuNCs, AuNPs are
non-luminescent nanomaterials, and they can quench NCs lumi-
nescence through Férster/ uorescence resonance energy transfer
(FRET) owing to high molar absorptivity constant and overlapping
of their photoexcitation with AUNCs emission.

For AuNCs, they have ultrasmall size (0.1 nm e 2 nm) consisting
of few to several Au atoms; therefore, it is a big challenge to control
the core size of AUNCs compared with AuNPs. Different emission
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adequate sites for nucleating and accommodating
contrast, it is long taken for granted that dislocation behaviors are
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22Mn-Q TWIP steel, DT happens only in part of grains because
of ori@itation anisotropy [14,22]. The quantitative measurement
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Electrocatalysts for oxygen reduction and/or evolution are key components for proton-exchange mem-

brane fuel cells (PEMFCs) and water electrolysis. However, the slow kinetics of oxygen reduction and/or
evolution reactions largely hampers the ef
electrocatalysts for oxygen reduction and evolution reactions must meet three requirements: (i) rapid
transport of electrons, ions, and products of the reaction; (ii) suf
and (iii) good intrinsic activity. Nanostructuration of electrocatalysts provides an effective approach to

overcome the slow kinetics because nanostructured electrocatalysts with rational design can not only
provide suf cient active sites but also promote intrinsic activity of electrocatalysts as well as possess the
ability of rapid transport of electrons, ions, and products of the reaction. Especially, electrocatalysts in the

ciencies of PEMFCs and water electrolysis. Highly ef cient

cient catalysts/reactants contact area;

form of one-dimensional nanostructures (1D-Nano) such as nanowires (NWs) and nanotubes (NTs) have
shown signi cant advantages, such as high surface area, rapid electron and mass transfer, low vulner-
ability to dissolution, Ostwald ripening, and aggregation, for oxygen evolution reaction (OER) and oxygen
reduction reaction (ORR). In this review, we summarize different strategies for fabricating 1D
nanostructure-based electrocatalysts (1D-NanoECs), which are categorized into template-free and
template-assisted strategies, and emphasis has been placed on anodic aluminum oxide template

e assisted strategies. Then, recent advances of 1D-NanoECs for ORR and OER applications are summa-
rized. Finally, future challenges and opportunities about 1D-NanoECs are discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Similar to batteries, fuel cells use the chemical energy of fuels to
produce electric energy, but the signi  cant difference is that fuel
cells have much faster charging time. For example, vehicles pow-
ered by hydrogen fuel cells can be fully refueled within only 3 min,
while lithium-ion batteries-based vehicles need at least a few
hours. What' more, hydrogen fuel cells have high energy density of
142 MJ/kg, which is more than 200 times that of lithium-ion bat-
teries (0.6 MJ/kg). Especially, fuel cells are also marked by higher
ef ciencies and no environmental pollution compared with the
internal combustion engines [1e 3]. Based on these advantages, fuel
cells have been widely used inthe elds of stationary and portable
power devices.

Among various kinds of fuel cells, proton-exchange membrane
fuel cells (PEMFCs) have obvious superiorities, including high

* Corresponding author.
E-mail address: yong.lei@tu-ilmenau.de (Y. Lei).

https://doi.org/10.1016/j.mtnano.2018.11.005
2588-8420/ © 2018 Elsevier Ltd. All rights reserved.

simplicity, low working temperature (50 e100 C), high power
density, and quick start-up [1,4,5]. In the PEMFC system, H is
oxidized at the anode surface to produce electrons and protons that
are transferred to the cathode through an external circuit and the
proton-exchange membrane, respectively (as shown in  Fig. 1).
Meanwhile, O ; is slowly reduced at the cathode surface by reacting
with protons and electrons to produce H ,0. Considering the
multistep reactions in the PEMFC system, three key issues are still
needed to be addressed to further improve its ef  ciency. (i) The
oxygen reduction reaction (ORR) rate is six or more orders of
magnitude slower than that of hydrogen oxidation reaction at the
anode and thus signi cantly restricts the rate of the whole PEMFC
system [6]. (ii) Most commercial electrocatalysts for ORR are based
on Pt with high cost, leading to the increasing price of large-sale
PEMFC. (iii) The adequate hydrogen production cannot be satis-
ed, which is a determinative prerequisite for realizing massive
utilization of fuel cells. Therefore, the discovery of high-ef  ciency
and cost-effective electrocatalysts for ORR is critical to improving
the overall PEMFC performance. Regarding the inadequate hydrogen
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This review provides a new perspective on the role of the state-of-the-art polymers of intrinsic micro-
porosity (PIMs) in key energy-intensive membrane-based gas separations including O  2/Nj, Ha/N2, Hy/
CH,, CQ/CHg, HoS/ICH,, GH4/CoHg, and C3He/C3Hg applications. A general overview on the gas separation
properties of novel PIM materials developed in the past 15 years is presented with updated performance
maps on the latest pure-gas 2015 O »/N,, H2/N,, and Hy/CH4 permeability/selectivity upper bounds.
Speci cally, functionalized ladder PIMs and polyimides of intrinsic microporosity (PIM-PIs) are discussed
targeting at high-performance, plasticization-resistant membranes for demanding acid gas (CO  , and H»S)
removal from CH 4 in natural gas and ole n/paraf n separations. Experimental CO ,/CH,4 performance data
of nearly 70 polymeric membrane materials available in the literature were gathered and plotted for the

rst time on the Robeson plot, from which a mixed-gas 2018 CO ,/CH4 upper bound was proposed to
provide guidance for future membrane materials development. A number of PIMs have demonstrated
outstanding performances in O /N, Hy/N2, and H,/CH,4 separations, and several functionalized PIMs have
shown great promises in CO »/CH,4 separation under realistic mixed-gas conditions. The potential of PIMs
materials and their derivatives for H ,S/CH;, GH4/CyHg, and C3Hg/C3Hg separations are underexplored,
and signi cant efforts are needed to develop stable and high-performance materials under mixed-gas
conditions. Ultimately, fabricating PIMs materials into defect-free, inexpensive, thin- Im composite or
integrally-skinned asymmetric membranes is paramount to their successful large-scale
commercialization.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial separation processes account for a signi  cant fraction
of the global energy consumption. Large energy consumption
drives the demand to improve the process energy ef ciency and
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